Note on Counting Eulerian Circuits

نویسندگان

  • Graham R. Brightwell
  • Peter Winkler
چکیده

We show that the problem of counting the number of Eulerian circuits in an undirected graph is complete for the class #P.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Eulerian Circuits is #P-Complete

We show that the problem of counting the number of Eulerian circuits in an undirected graph is complete for the class #P. The method employed is mod-p reduction from counting Eulerian orientations.

متن کامل

Asymptotic enumeration of Eulerian circuits for graphs with strong mixing properties

Let G be a simple connected graph all of whose vertices have even degrees. An Eulerian circuit in G is a closed walk (see, for example, [2]) which uses every edge of G exactly once. Two Eulerian circuits are called equivalent if one is a cyclic permutation of the other. It is clear that the size of such an equivalence class equals the number of edges of graph G. Let EC(G) denote the number of e...

متن کامل

On the Average Length of Secret Key Exchange Eulerian Circuits

Designing a protocol to exchange a secret key is one of the most fundamental subjects in cryptography. Using a random deal of cards, pairs of card players (agents) can share secret keys that are information-theoretically secure against an eavesdropper. A key set protocol, which uses a random deal of cards, can perform an Eulerian secret key exchange, in which the pairs of players sharing secret...

متن کامل

Counting the Number of Eulerian Orientations

Consider an undirected Eulerian graph, a graph in which each vertex has even degree. An Eulerian orientation of the graph is an orientation of its edges such that for each vertex v, the number of incoming edges of v equals to outgoing edges of v, i.e. din(v) = dout(v). Let P0 denote the set of all Eulerian orientations of graph G. In this paper, we are concerned with the questions of sampling u...

متن کامل

Asymptotic Enumeration of Eulerian Circuits in the Complete Graph

We determine the asymptotic behaviour of the number of eulerian circuits in a complete graph of odd order. One corollary of our result is the following. If a maximum random walk, constrained to use each edge at most once, is taken on Kn, then the probability that all the edges are eventually used is asymptotic to en. Some similar results are obtained about eulerian circuits and spanning trees i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره cs.CC/0405067  شماره 

صفحات  -

تاریخ انتشار 2004